MoS₂-Catalyzed Methanation of CO with H₂S¹

Molybdenum disulfide is among the few methanation catalysts of CO that are unaffected by sulfur impurities (1, 2). Indeed, MoS₂ catalyzes H₂S splitting, producing H₂ and S° above 400°C (3–5). The overall stoichiometry (6) of the MoS₂/Al₂O₃-catalyzed methanation reaction is 2CO + 2H₂ \rightarrow CH₄ + CO₂. Furthermore, when H₂S (H₂S/H₂ \leq 10⁴ ppm) is added to the feed gas, the methanation rate increases significantly.

The objective of our research was to investigate whether MoS_2/Al_2O_3 directly catalyzes the methanation of CO with H_2S , without added H_2 . Of special concern were the efficiency of the reaction, the effect of temperature, and the characteristics of the catalyst.

The preparation of MoS_2/Al_2O_3 was a variation of a published procedure (6), except that the catalyst was not calcined at 500°C. 15.2 g of 3.2-mm activated γ -alumina pellets (80–100 m² g⁻¹; Alfa) were immersed in 150 ml of aqueous 0.5 м ammonium molybdate (VI) (Aldrich) and then air dried at 100°C. Energy dispersive X-ray spectroscopy (EDS) of the treated Al₂O₃ indicated that Mo was dispersed homogeneously throughout the support and that Mo/Al was 3.1 atom%, corresponding to 8.8 wt% of MoO_3 on Al_2O_3 . The MoO_3 was converted to MoS₂ in situ by reaction with H₂S during the methanation of CO. Transmission electron imaging coupled with selected area electron diffraction and EDS analyses indicated that MoS₂ was present only on the Al₂O₃ surface and not throughout the bulk support.

The reactant gases were introduced into a fix-bed flow reactor. Both reactant and product gases were analyzed by a gas chromatograph equipped with a Teflon Haysep-C column and a stainless steel Carbosieve-S column for the respective separation of H_2S and organics. Methane was detected by a flame ionization detector; other gases were monitored by a thermal conductivity detector.

Figure 1 displays a typical plot of the CH₄ production rate with time. After 2.5 h, the rate is seen to plateau. XPS studies of the catalyst indicated that the CH₄ production rate correlated with the conversion of MoO₃ to MoS_2 , implying that MoS_2 was the predominant active species. Other studies (6)support a similar conclusion about the methanation of CO in H_2/H_2S . After the methanation rate leveled off, the catalyst was found to consist of a mixture of MoS₂ and various oxides of molybdenum. The extent of converting MoO₃ to MoS₂ in H₂S/H₂ is known (6, 7) to depend on the H₂S concentration and the exposure time of MoO_3 to H_2S . Both EDS and transmission electron diffraction showed the presence of hexagonal MoS₂ on the alumina, in agreement with the XPS results. TEM revealed that the MoS₂ was composed of 0.1 to 1.0 μ m particles. Transmission electron diffraction patterns were consistent with MoS₂ particles having a microcrystalline structure. Dark field electron micrographs were formed using various regions (about 15° arc segments) of the (100)/ (101) polycrystalline ring. Using this technique, the individual crystallites within the MoS₂ particle were imaged and found to be on the order of 1-10 nm. The micrographs also indicated that the MoS₂ particles were on the Al₂O₃ surface and were not intimately incorporated into the support. XPS spectra showed S²⁻ and small amounts of S° on the MoS₂ surface. No sulfur species were found on MoO₃-free alumina that had been exposed to H₂S and CO at 300°C. The XPS

¹ The U.S. Government's right to retain a nonexclusive royalty-free license in and to the copyright covering this paper, for governmental purposes, is acknowledged.

FIG. 1. Methanation rate dependence on time: reaction temperature, 350°C; total pressure, 1 atm; H₂S, 3.5 \times 10⁻⁶ mol s⁻¹; CO, 4.9 \times 10⁻⁶ mol s⁻¹; space velocity, 45 h⁻¹.

and electron diffraction data are consistent with the following reaction:

$$\frac{\text{MoO}_3/\text{Al}_2\text{O}_3 + 3 \text{H}_2\text{S} \rightarrow}{\text{MoS}_2/\text{Al}_2\text{O}_3 + 3 \text{H}_2\text{O} + \text{S}^\circ}$$
(1)

The presence of S^{2-} on the MoS₂ surface is ascribed to H₂S adsorption.

Both CH_4/CO_2 and H_2/COS were ~1 at 350°C. Furthermore, the omission of either H_2S or CO eliminated H_2 production. These results suggest that CO and H_2S underwent two simultaneous reactions on MoS_2/Al_2O_3 :

 $2 \text{ CO} + 2 \text{ H}_2\text{S} \rightarrow \text{CH}_4 + \text{CO}_7 + 2 \text{ S}^\circ \quad (2)$

$$CO + H_2 S \rightarrow COS + H_2 \tag{3}$$

The respective standard free energies are -24.9 and 1.2 kcal mol⁻¹. Reaction (3) is slightly endergonic but is anticipated to be kinetically more favorable than reaction (2) because of its relative simplicity. In fact, COS/CH₄ was ~2.

Figure 2 shows that the CH₄ production rate did not pass through a maximum as the CO feed rate increased from 0 to 3×10^{-5} mol s⁻¹ at a constant H₂S feed rate (3.5×10^{-6} mol s⁻¹), indicating that CO is more weakly bound to MoS₂ than H₂S and does not easily displace H₂S. At the reactor temperature, some dissociation of CO is expected (6). XPS studies indicate the pres-

FIG. 2. Methanation rate dependence on CO feed rate: reaction temperature, 450°C; total pressure, 1 atm; H_2S , 3.5×10^{-6} mol s⁻¹.

ence of residue CH_x . These observations suggest that CO and H_2S react on the MoS_2 surface to form CH_4 . The CH_4 production rate plateaus at a CO/ H_2S of 12 at a constant H_2S flow rate. In the plateau region, about 10% of the H_2S and 1% of the CO are converted to CH_4 at 450°C and a space velocity of 270 h⁻¹. At lower temperatures and space velocities, the conversion efficiency improves significantly, as discussed below.

Figure 3 displays a plot of the rate of CH₄ production between 100° and 600°C. The maximum rate (1.8×10^{-7} mol s⁻¹) occurs at 350°C. At this temperature, a space velocity of 50 h⁻¹, and a CO/H₂S of 1.6, about

FIG. 3. Methanation rate dependence on temperature for MoS_2/Al_2O_3 and Al_2O_3 : total pressure 1 atm; H_2S , 3.7×10^{-6} mol s⁻¹; CO, 5.9×10^{-6} mol s⁻¹; space velocity, 50 h⁻¹.

50% of the H₂S and 30% of the CO react to form CH₄. Thus, decreasing the flow rate from 270 to 50 h⁻¹ and the temperature from 450° to 350°C produced a significant increase in the conversion efficiency. Below 350°C, no CH₄ production is seen on Al₂O₃ in concurrence with the XPS results, showing no H₂S adsorption on the support run at 300°C. Above 400°C, however, some CH₄ production on the support is observed. It is noteworthy that the rate of methanation on MoS₂ decreases above 350°C, whereas the reaction rate on Al₂O₃ increases, implying that two mechanisms are operative above 350°C.

In conclusion, MoS_2 is found to catalyze the methanation of CO with H_2S , without added H_2 . This reaction proceeds at high conversion efficiencies and its rate maximizes at about 350°C. Higher conversion efficiencies are expected with improved reactor design and catalyst preparation procedure and with further optimization of the reactant flow rates with temperature.

ACKNOWLEDGMENT

This work was supported by the Gas Research Institute.

REFERENCES

 For example, (a) Mills, G. A., and Steffgen, F. W., Catal. Rev. 8, 159 (1973); (b) Bartholomew, C. H., Agrawal, P.K., and Katzer, J. R., "Advances in Catalysis," Vol. 31, p. 135, Academic Press, New York, 1982.

- 2. Saito, M., and Anderson, R. B., J. Catal. 63, 438 (1980).
- Fukuda, K., Doklya, M., Kameyama, T., and Kotera, Y., *Ind. Eng. Chem. Fundam.* 17, 243 (1978).
- (a) Chivers, T., Hyne, J. B., and Lau, C., Int. J. Hydrogen Energy 5, 499 (1980); (b) Chivers, T. and Lau, C., Int. J. Hydrogen Energy 12, 235 (1987).
- Bishara, A., Salman, O. A., Khraishi, N., and Marafi, A. Int. J. Hydrogen Energy 12, 679 (1987).
- 6. Hou, P. Y., and Wise, H., J. Catal. 93, 409 (1985).
- Patterson, T. A. Carver, J. C., Leyden, D. E., and Hercules, D. M., *J.Phys. Chem.* 80, 1700 (1976).

Arthur J. Frank² Harold A. Dick John Goral Arthur J. Nelson

Solar Energy Research Institute Golden, Colorado 80401

MICHAEL GRÄTZEL

Institut de Chimie physique École Polytechnique Fédérale CH-1015 Lausanne, Switzerland

Received November 16, 1989; revised July 17, 1990

² Author to whom correspondence should be addressed.